Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Bioresour Technol ; : 130796, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38703957

RESUMO

The novel recombinant Escherichia coli strain was construct through cell surface display for the treatment of cobalt contaminated wastewater and dye contaminated wastewater. First, structural analysis of known cobalt binding peptide was conducted and core binding sites were figured out which showing better cobalt binding ability. The cobalt peptides were attached to OmpC to construct cobalt adsorbing recombinant Escherichia coli. The recombinant strain efficiently absorbed and retrieved cobalt from cobalt wastewater by adsorbing 1895 µmol/g DCW of cobalt. Following adsorption, cobalt nanoparticles were synthesized through thermal decomposition of cobalt adsorbed recombinant strain at 500˚C. The nanoparticles exhibited noteworthy photocatalytic properties, demonstrating a substantial capacity for degrading dyes when used as a catalyst at a concentration of 10 mg/dl. These results presenting potential solutions for effective and environmentally friendly approaches to address cobalt and dye contaminated wastewater treatment process.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38573823

RESUMO

Escherichia coli were engineered to selectively adsorb and recover lithium from the environment by employing a bacterial cell surface display strategy. Lithium binding peptide (LBP1) was integrated into the Escherichia coli membrane protein OmpC. The effect of environmental conditions on the adsorption of lithium by a recombinant strain was evaluated, and lithium particles on the cellular surface were analyzed by FE-SEM and XRD. To elevate the lithium adsorption, dimeric, trimeric, and tetrameric repeats of the LBP1 peptide were constructed and displayed on the surface of E. coli. The constructed recombinant E. coli displaying the LBP1 trimer was applied to real industrial lithium battery wastewater to recover lithium.


Assuntos
Escherichia coli , Lítio , Porinas , Escherichia coli/genética , Escherichia coli/metabolismo , Adsorção , Resíduos Industriais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Águas Residuárias/microbiologia , Fontes de Energia Elétrica , Técnicas de Visualização da Superfície Celular , Proteínas Recombinantes/genética
3.
J Mater Chem B ; 12(18): 4489-4501, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38644661

RESUMO

Orthopedic device-related infection (ODRI) poses a significant threat to patients with titanium-based implants. The challenge lies in developing antibacterial surfaces that preserve the bulk mechanical properties of titanium implants while exhibiting characteristics similar to bone tissue. In response, we present a two-step approach: silver nanoparticle (AgNP) coating followed by selective laser-assisted surface alloying on commonly used titanium alumina vanadium (TiAl6V4) implant surfaces. This process imparts antibacterial properties without compromising the bulk mechanical characteristics of the titanium alloy. Systematic optimization of laser beam power (8-40 W) resulted in an optimized surface (32 W) with uniform TiAg alloy formation. This surface displayed a distinctive hierarchical mesoporous textured surface, featuring cauliflower-like nanostructures measuring between 5-10 nm uniformly covering spatial line periods of 25 µm while demonstrating homogenous elemental distribution of silver throughout the laser processed surface. The optimized laser processed surface exhibited prolonged superhydrophilicity (40 days) and antibacterial efficacy (12 days) against Staphylococcus aureus and Escherichia coli. Additionally, there was a significant twofold increase in bone mineralization compared to the pristine Ti6Al4V surface (p < 0.05). Rockwell hardness tests confirmed minimal (<1%) change in bulk mechanical properties compared to the pristine surface. This innovative laser-assisted approach, with its precisely tailored surface morphology, holds promise for providing enduring antibacterial and osteointegration properties, rendering it an optimal choice for modifying load-bearing implant devices without altering material bulk characteristics.


Assuntos
Ligas , Antibacterianos , Escherichia coli , Lasers , Próteses e Implantes , Prata , Staphylococcus aureus , Propriedades de Superfície , Titânio , Titânio/química , Titânio/farmacologia , Prata/química , Prata/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Ligas/química , Ligas/farmacologia , Animais , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química , Calcificação Fisiológica/efeitos dos fármacos
4.
IEEE Trans Biomed Eng ; PP2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38096093

RESUMO

Effective management of Inflammatory Bowel Disease (IBD) is contingent upon frequent monitoring of inflammation levels at targeted locations within the gastrointestinal (GI) tract. This is crucial for assessing disease progression and detecting potential relapses. To address this need, a novel single-use capsule technology has been devised that enables region-specific inflammation measurement, thereby facilitating repeatable monitoring within the GI tract. The capsule integrates a pH-responsive coating for location-specific activation, a chemiluminescent paper-based myeloperoxidase (MPO) sensor for inflammation detection, and a miniaturized photodetector, complemented by embedded electronics for real-time wireless data transmission. Demonstrating linear sensitivity within the physiological MPO concentration range, the sensor is capable of effectively identifying inflammation risk in the GI fluid. Luminescence emitted by the sensor, proportional to MPO concentration, is converted into an electrical signal by the photodetector, generating a quantifiable energy output with a sensitivity of 6.14 µJ/U.ml-1. The capsule was also tested with GI fluids collected from pig models simulating various inflammation states. Despite the physiological complexities, the capsule consistently activated in the intended region and accurately detected MPO levels with less than a 5% variation between readings in GI fluid and a PBS solution. This study heralds a significant step towards minimally invasive, in situ GI inflammation monitoring, potentially revolutionizing personalized IBD management and patient-specific therapeutic strategies.

5.
Bioengineering (Basel) ; 10(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38135980

RESUMO

A novel Escherichia coli strain, created by engineering its cell surface with a cobalt-binding peptide CP1, was investigated in this study. The recombinant strain, pBAD30-YiaT-CP1, was structurally modeled to determine its cobalt-binding affinity. Furthermore, the effectiveness and specificity of pBAD30-CP1 in adsorbing and extracting cobalt from artificial wastewater polluted with the metal were investigated. The modified cells were subjected to cobalt concentrations (0.25 mM to 1 mM) and pH levels (pH 3, 5, 7, and 9). When exposed to a pH of 7 and a cobalt concentration of 1 mM, the pBAD30-CP1 strain had the best cobalt recovery efficiency, measuring 1468 mol/g DCW (Dry Cell Weight). Furthermore, pBAD30-CP1 had a higher affinity for cobalt than nickel and manganese. Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), and Energy-Dispersive X-ray Spectroscopy (EDS) were used to examine the physiochemical parameters of the recombinant cells after cobalt adsorption. These approaches revealed the presence of cobalt in a bound state on the cell surface in the form of nanoparticles. In addition, the cobalt-binding recombinant strains were used in the photocatalytic reduction of methylene blue, which resulted in a 59.52% drop in the observed percentage. This study shows that modified E. coli strains have the potential for efficient cobalt recovery and application in environmental remediation operations.

6.
Sci Rep ; 12(1): 13927, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35977975

RESUMO

The problematic combination of a rising prevalence of skin and soft tissue infections and the growing rate of life-threatening antibiotic resistant infections presents an urgent, unmet need for the healthcare industry. These evolutionary resistances originate from mutations in the bacterial cell walls which prevent effective diffusion of antibiotics. Gram-negative bacteria are of special consideration due to the natural resistance to many common antibiotics due to the unique bilayer structure of the cell wall. The system developed here provides one solution to this problem through a wearable therapy that delivers and utilizes gaseous ozone as an adjunct therapy with topical antibiotics through a novel dressing with drug-eluting nanofibers (NFs). This technology drastically increases the sensitivity of Gram-negative bacteria to common antibiotics by using oxidative ozone to bypass resistances created by the bacterial cell wall. To enable simple and effective application of adjunct therapy, ozone delivery and topical antibiotics have been integrated into a single application patch. The drug delivery NFs are generated via electrospinning in a fast-dissolve PVA mat without inducing decreasing gas permeability of the dressing. A systematic study found ozone generation at 4 mg/h provided optimal ozone levels for high antimicrobial performance with minimal cytotoxicity. This ozone treatment was used with adjunct therapy delivered by the system in vitro. Results showed complete eradication of Gram-negative bacteria with ozone and antibiotics typically used only for Gram-positive bacteria, which showed the strength of ozone as an enabling adjunct treatment option to sensitize bacteria strains to otherwise ineffective antibiotics. Furthermore, the treatment is shown through biocompatibility testing to exhibit no cytotoxic effect on human fibroblast cells.


Assuntos
Infecções por Bactérias Gram-Negativas , Ozônio , Dispositivos Eletrônicos Vestíveis , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Ozônio/farmacologia , Ozônio/uso terapêutico
7.
Langmuir ; 38(13): 4014-4027, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35312330

RESUMO

Despite the great advancement and wide use of titanium (Ti) and Ti-based alloys in different orthopedic implants, device-related infections remain the major complication in modern orthopedic and trauma surgery. Most of these infections are often caused by both poor antibacterial and osteoinductive properties of the implant surface. Here, we have demonstrated a facile two-step laser nanotexturing and immobilization of silver onto the titanium implants to improve both cellular integration and antibacterial properties of Ti surfaces. The required threshold laser processing power for effective nanotexturing and osseointegration was systematically determined by the level of osteoblast cells mineralized on the laser nanotextured Ti (LN-Ti) surfaces using a neodymium-doped yttrium aluminum garnet laser (Nd:YAG, wavelength of 1.06 µm). Laser processing powers above 24 W resulted in the formation of hierarchical nanoporous structures (average pore 190 nm) on the Ti surface with a 2.5-fold increase in osseointegration as compared to the pristine Ti surface. Immobilization of silver nanoparticles onto the LN-Ti surface was conducted by dip coating in an aqueous silver ionic solution and subsequently converted to silver nanoparticles (AgNPs) by using a low power laser-assisted photocatalytic reduction process. Structural and surface morphology analysis via XRD and SEM revealed a uniform distribution of Ag and the formation of an AgTi-alloy interface on the Ti surface. The antibacterial efficacy of the LN-Ti with laser immobilized silver (LN-Ti/LI-Ag) was tested against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The LN-Ti/LI-Ag surface was observed to have efficient and stable antimicrobial properties for over 6 days. In addition, it was found that the LN-Ti/LI-Ag maintained a cytocompatibility and bone cell mineralization property similar to the LN-Ti surface. The differential toxicity of the LN-Ti/LI-Ag between bacterial and cellular species qualifies this approach as a promising candidate for novel rapid surface modification of biomedical metal implants.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/química , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Lasers , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Propriedades de Superfície , Titânio/química
8.
ACS Appl Bio Mater ; 4(7): 5405-5415, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35006756

RESUMO

Chronic nonhealing wounds are a growing socioeconomic problem that affects more than 6 million people annually solely in the United States. These wounds are colonized by bacteria that often develop into biofilms that act as a physical and chemical barrier to therapeutics and tissue oxygenation leading to chronic inflammation and tissue hypoxia. Although wound debridement and vigorous mechanical abrasion techniques are often used by clinical professionals to manage and remove biofilms from wound surfaces, such methods are highly nonselective and painful. In this study, we have developed a flexible polymer composite microneedle array that can overcome the physicochemical barriers (i.e., bacterial biofilm) present in chronic nonhealing wounds and codeliver oxygen and bactericidal agents. The polymeric microneedles are made by using a facile UV polymerization process of polyvinylpyrrolidone and calcium peroxide onto a flexible polyethylene terephthalate substrate for conformable attachment onto different locations of the human body surface. The microneedles effectively elevate the oxygen levels from 8 to 12 ppm once dissolved over the course of 2 h while also providing strong bactericidal effects on both liquid and biofilm bacteria cultures of both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacterial strains commonly found in dermal wounds. Furthermore, the results from the ex vivo assay on a porcine wound model indicated successful insertion of the microneedles into the tissue while also providing effective bactericidal properties against both Gram-positive and Gram-negative within the complex tissue matrix. Additionally, the microneedles demonstrate high levels of cytocompatibility with less than 10% of apoptosis throughout 6 days of continuous exposure to human dermal fibroblast cells. The demonstrated flexible microneedle array can provide a better approach for increasing the effectiveness of topical tissue oxygenation as well as the treatment of infected wounds with intrinsically antibiotic resistant biofilms.


Assuntos
Biofilmes , Infecção dos Ferimentos , Animais , Antibacterianos/farmacologia , Bactérias , Humanos , Oxigênio/farmacologia , Pseudomonas aeruginosa , Staphylococcus aureus , Suínos , Infecção dos Ferimentos/tratamento farmacológico
9.
IEEE Trans Biomed Eng ; 68(3): 747-758, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32780694

RESUMO

In this article, we demonstrate a wireless and passive physiological pressure sensing scheme that utilizes ultrasound imaging of an implantable microfluidic based pressure sensitive transducer. The transducer consists of a sub-mm scale pressure sensitive membrane that covers a reservoir filled with water and is connected to a hydrophobic micro-channel. Applied pressure onto the transducer deflects the membrane and pushes the water from the reservoir into the channel; the water's travelling distance in the channel is a function of the applied pressure, which is quantitatively measured by using a 40 MHz ultrasound imaging system. The sensor presents a linear sensitivity of 42 kPa/mm and a spatial resolution of 1.2 kPa/30 µm in the physiological range of abdominal compartment syndrome. Reliability assessments of the transducer confirm its ability to remain functional after more than 600 cycles of pressure up to 55 kPa over the course of 2 days. Ex vivo experimental results verify the practical capability of the technology to effectively measure pressures under a 15 mm thick porcine skin. It is anticipated that this technology can be applied to a broad range of implantable pressure measurement, by simply tuning the thickness of the thin polydimethylsiloxane membrane and the geometry of the reservoir.


Assuntos
Dispositivos Lab-On-A-Chip , Próteses e Implantes , Animais , Reprodutibilidade dos Testes , Suínos , Transdutores de Pressão , Ultrassom
10.
Artigo em Inglês | MEDLINE | ID: mdl-32509746

RESUMO

Wound-associated infections are a significant and rising health concern throughout the world owing to aging population, prevalence of diabetes, and obesity. In addition, the rapid increase of life-threatening antibiotic resistant infections has resulted in challenging wound complications with limited choices of effective therapeutics. Recently, topical ozone therapy has shown to be a promising alternative approach for treatment of non-healing and infected wounds by providing strong antibacterial properties while stimulating the local tissue repair and regeneration. However, utilization of ozone as a treatment for infected wounds has been challenging thus far due to the need for large equipment usable only in contained, clinical settings. This work reports on the development of a portable topical ozone therapy system comprised of a flexible and disposable semipermeable dressing connected to a portable and reusable ozone-generating unit via a flexible tube. The dressing consists of a multilayered structure with gradient porosities to achieve uniform ozone distribution. The effective bactericidal properties of the ozone delivery platform were confirmed with two of the most commonly pathogenic bacteria found in wound infections, Pseudomonas aeruginosa and Staphylococcus epidermidis. Furthermore, cytotoxicity tests with human fibroblasts cells indicated no adverse effects on human cells.

11.
J Ind Microbiol Biotechnol ; 45(1): 31-41, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29185080

RESUMO

In a cell-surface display (CSD) system, successful display of a protein or peptide is highly dependent on the anchoring motif and the position of the display in that anchoring motif. In this study, a recombinant bacterial CSD system for manganese (Mn) and cobalt (Co) recovery was developed by employing OmpC as an anchoring motif on three different external loops. A portion of Cap43 protein (TRSRSHTSEG)3 was employed as a manganese and cobalt binding peptide (MCBP), which was fused with OmpC at three different external loops. The fusions were made at the loop 2 [fusion protein-2 (FP2)], loop 6 (FP6), and loop 8 (FP8) of OmpC, respectively. The efficacy of the three recombinant strains in the recovery of Mn and Co was evaluated by varying the concentration of the respective metal. Molecular modeling studies showed that the short trimeric repeats of peptide probably form a secondary structure with OmpC, thereby giving rise to a difference in metal recovery among the three recombinant strains. Among the three recombinant strains, FP6 showed increased metal recovery with both Mn and Co, at 1235.14 (1 mM) and 379.68 (0.2 mM) µmol/g dry cell weight (DCW), respectively.


Assuntos
Cobalto/metabolismo , Proteínas de Escherichia coli/química , Manganês/metabolismo , Porinas/química , Técnicas de Visualização da Superfície Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Peptídeos/química , Peptídeos/metabolismo , Porinas/genética , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
12.
J Hazard Mater ; 346: 133-139, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29253752

RESUMO

A two-compartment membrane electroflotation reactor has been demonstrated for recovery of recyclable chromium(III) from tannery spent liquor effluent. Dimensionally stable RuO2/TiO2-Ti and Ti were used as anode and cathode, respectively. The spent liquor effluent was used as catholyte and 0.01 N H2SO4 used as anolyte which was separated by Nafion 117 membrane. About 98% of chromium(III) was recovered and the removal efficiency correlated with the presence of organics in the effluent. The advantage of two-compartment membrane electroflotation process is capable of removing chromium(III) without oxidising it into chromium(VI) in chloride containing tannery spent liquor effluent. The mechanism of chromium(III) removal has been discussed. The recovered Cr(OH)3 was successfully demonstrated for tanning of cowhide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA